Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 12: 1357330, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410818

RESUMO

The main objective of this study is to synthesize and characterize of a new three complexes of Pd (II), Cu (II), and Cu (I) metal ions with novel ligand ((Z)-2-(phenylamino)-N'-(thiophen-2-ylmethylene)acetohydrazide) H2LB. The structural composition of new compounds was assessed using several analytical techniques including FT-IR, 1H-NMR, electronic spectra, powder X-ray diffraction, and thermal behavior analysis. The Gaussian09 program employed the Density Functional Theory (DFT) approach to optimize the geometry of all synthesized compounds, therefore obtaining the most favorable structures and crucial parameters. An investigation was conducted to examine the impact of γ-irradiation on ligands and complexes. Before and after γ-irradiation, the antimicrobial efficiency was investigated for the activity of ligands and their chelates. The Cu(I) complex demonstrated enhanced antibacterial activity after irradiation, as well as other standard medications such as ampicillin and gentamicin. Similarly, the Cu(I) complex exhibited superior activity against antifungal species relative to the standard drug Nystatin. The docking investigation utilized the target location of the topoisomerase enzyme (2xct) chain A.

2.
Langmuir ; 39(37): 13038-13049, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37661715

RESUMO

Copper selenide (Cu-Se) and copper sulfide (Cu-S) are promising cathodes for magnesium-ion batteries. However, the low electronic conductivity of Cu-Se system results in a poor rate capability and unsatisfactory cycling performance. Mg-ion batteries based on the Cu-S cathode exhibited large kinetic barriers during the recharging process owing to the presence of polysulfide species. This work attempts to circumvent this dilemma by doping Cu1.8Se by sulfur, which replaces the selenium in the CuSe lattice to form Cu1.8Se0.6S0.4 nanocrystalline powder. The presence of sulfur will increase the electronic conductivity, and the presence of selenium will mitigate the effect of polysulfide species that hinder the kinetics of Mg2+. Herein, a Cu1.8Se0.6S0.4 nanocrystalline powder was synthesized by the solid-state reaction, yielding a highly pure and stoichiometric powder. The crystallographic structure of the nanopowder and the conversion-type storage mechanism have been attested via ex situ X-ray diffraction and energy-dispersive X-ray analysis. The nanocrystalline feature of Cu1.8Se0.6S0.4 was demonstrated by high-resolution transmission electron microscopy. An apparent surface morphology change during the charging/discharging process has been visualized by a field emission scanning electron microscope. Diffuse reflectance spectroscopy has discussed the variation of the band gap during charging and discharging. The full Mg/Cu1.8Se0.6S0.4 cells presented an initial discharge capacity of 387.99 mAh g-1 at a current density of 0.02 mA cm-2; moreover, they show moderate diffusion kinetics with DMg2+ ≈ 10-15 cm-2 s-1.

3.
ACS Omega ; 8(26): 23633-23642, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37426249

RESUMO

Toward multifunctionality, including antimicrobial and optoelectronic applications, herein, we reported the synthesis of a novel Ag(I) complex with 3-oxo-3-phenyl-2-(2-phenylhydrazono)propanal-based ligands including 3-(4-chlorophenyl)-2-[2-(4-nitrophenyl)hydrazono]-3-oxopropanal (named as "4A"), 3-(4-chlorophenyl)-2-[2-(4-methylphenyl)hydrazono]-3-oxopropanal (named as "6A"), and 3-(4-chlorophenyl)-3-oxo-2-(2-phenylhydrazono)propanal (named as "9A"). The synthesized compounds were characterized through FTIR, 1H NMR, and density functional theory (DFT). The morphological features and thermal stability were evaluated through transmission electron microscopy (TEM) and TG/DTA analysis. The antimicrobial activity of the synthesized Ag complexes was tested against various pathogens, including Gram-negative bacteria (Escherichia coli and Klebsiella pneumonia), Gram-positive bacteria (Staphylococcus aureus and Streptococcus mutans), and fungi (Candida albicans and Aspergillus niger). Results show that the synthesized complexes (Ag(4A), Ag(6A), and Ag(9A)) possess promising antimicrobial efficacy against various pathogens and are in good competition with several standard drugs as well. On the other hand, the optoelectronic features such as absorbance, band gap, and Urbach energy were examined by measuring the absorbance using a UV-vis spectrophotometer. The values of the band gap reflected the semiconducting nature of these complexes. The complexation with Ag resulted in a lowering band gap to match the apex of the solar spectrum. Such low band gap values are preferable for optoelectronic applications like dye-sensitized solar cells, photodiodes, and photocatalysis.

4.
Molecules ; 28(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36985561

RESUMO

Four new complexes (Ni2+, Cu2+, Ag+, and Hg2+) were prepared from the ligand N-(4-chlorophenyl)-2-(phenylglycyl)hydrazine-1-carbothioamide (H2L). Analytical and spectroscopic techniques were used to clarify the structural composition of the new chelates. In addition, all chelates were tested against bacterial strains and the HepG2 cell line to determine their antiseptic and carcinogenic properties. The Ni(II) complex was preferable to the other chelates. Molecular optimization revealed that H2L had the highest reactivity, followed by Hg-chelate, Ag-chelate, Ni-chelate, and Cu-chelate. Moreover, molecular docking was investigated against two different proteins: the ribosyltransferase enzyme (code: 3GEY) and the EGFR tyrosine kinase receptor (code: 1m17).


Assuntos
Complexos de Coordenação , Mercúrio , Tiossemicarbazonas , Simulação de Acoplamento Molecular , Ligantes , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/química , Níquel/farmacologia , Níquel/química , Complexos de Coordenação/química , Antibacterianos/farmacologia , Antibacterianos/química , Quelantes , Mercúrio/farmacologia , Cobre/farmacologia , Cobre/química
5.
Biosensors (Basel) ; 12(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36551078

RESUMO

A novel, metal-free electrode based on heteroatom (S, N, P, O)-doped carbon nanoplates (SNPO-CPL) modifying lead pencil graphite (LPG) has been synthesized by carbonizing a unique heteroatom (S, N, P, O)-containing novel polymer, poly(cyclcotriphosphazene-co-2,5-dioxy-1,4-dithiane) (PCD), for precise screening of dopamine (DA). The designed electrode, SNPO-CPL-800, with optimized percentage of S, N, P, O doping through the sp2-carbon chain, and a large number of surface defects (thus leading to a maximum exposition number of catalytic active sites) led to fast molecular diffusion through the micro-porous structure and facilitated strong binding interaction with the targeted molecules in the interactive signaling transducer at the electrode-electrolyte interface. The designed SNPO-CPL-800 electrode exhibited a sensitive and selective response towards DA monitoring, with a limit of detection (LOD) of 0.01 nM. We also monitored DA levels in commercially available chicken samples using the SNPO-CPL-800 electrode even in the presence of interfering species, thus proving the effectiveness of the designed electrode for the precise monitoring of DA in real samples. This research shows there is a strong potential for opening new windows for ultrasensitive DA monitoring with metal-free electrodes.


Assuntos
Carbono , Grafite , Animais , Carbono/química , Dopamina/química , Galinhas , Grafite/química , Limite de Detecção , Eletrodos , Técnicas Eletroquímicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...